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We present a lattice calculation ofL10, one of the low energy constants in Chiral Perturbation The-

ory, and the charged-neutral pion squared mass splitting, using dynamical overlap fermion. Exact

chiral symmetry of the overlap fermion allows us to reliablyextract these quantities from the dif-

ference of the vacuum polarization functions for vector andaxial-vector currents. In the context of

the technicolor models, these two quantities are read as theS-parameter and the pseudo-Nambu-

Goldstone boson mass respectively, and play an important role in discriminating the models from

others. This calculation can serve as a feasibility study ofthe lattice techniques for more general

technicolor gauge theories.

The XXVI International Symposium on Lattice Field Theory
July 14 - 19, 2008
Williamsburg, Virginia, USA

∗Speaker.
†norikazu.yamada@kek.jp

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
A
T
T
I
C
E
 
2
0
0
8
)
2
8
4

S-parameter and pseudo-Nambu-Goldstone boson mass from overlap lattice QCD N. Yamadaa,b

Spontaneous chiral symmetry breaking (SχSB) of strongly interacting gauge theory may pro-
vide a natural mechanism for the electroweak symmetry breaking. A class ofnew physics models
based on this idea, so-called the technicolor models, has been studied extensively [1]. In most of
those models, massless techni-quarks with weak charge are introduced; the weak gauge bosons
acquire masses from their SχSB. TheS-parameter may then be sizably affected, for which those
models can be strongly constrained through the electroweak precision measurements [2]. Another
characteristic signal of the technicolor models, that may be observed at theLHC experiments, is the
presence of extra Nambu-Goldstone bosons (NGBs) which are not eaten by the weak gauge bosons.
They are called the pseudo-NGBs (pNGBs), since they must be made massive by introducing ex-
plicit breaking of the chiral symmetry of the techni-quarks in a model dependent way, otherwise
they would remain massless. Since theS-parameter and the pNGB mass are consequences of strong
dynamics of the underlying theory, non-perturbative framework is required for their calculation. In
previous studies, some model was involved in the calculation,e.g. [3]. The paper of this work is
already available in [4].

In this work we consider two-flavor QCD as a testing ground of our method and demonstrate
that the first principles calculation of those quantities is possible. In this context, theS-parameter
corresponds toLr

10 (or l r
5 in another convention), one of the low-energy constants of the chiral per-

turbation theory (ChPT), asS=−16π[Lr
10(µ)−{ln(µ2/m2

H)−1/6}/192π2] with a renormalization
scaleµ and the Higgs massmH [2]. Lr

10 is related to a difference of vacuum polarization functions

between vector and axial-vector currentsΠ(1)
V−A(q2)≡Π(1)

V (q2)−Π(1)
A (q2) near the zero momentum

insertion. (A formula will be given in (5).)
For the pNGB mass, a mass formula that is valid for a wide range of technicolormodels and

breaking patterns is known [5]. The formula contains a nonperturbativepart written in terms of
the vacuum polarization functions. The charged pions in two-flavor QCD isan example of pNGB,
as the electromagnetic interaction explicitly breaksSU(2) chiral symmetry and gives a finite mass
even in the massless limit of up and down quarks [6]. The corresponding mass formula is known
as the DGMLY sum rule [7]

m2
π± = −3α

4π

∫ ∞

0
dq2 q2 Π(1)

V−A(q2)|mq=0

f 2 , (1)

which gives the mass of charged pions at the leading order of the electromagnetic interaction. Here
f denotes the pion decay constant in the chiral limit. Note that neutral pion is massless in this limit.

In the continuum theory chiral symmetry guarantees that the differenceΠ(1)
V−A(q2) exactly

vanishes in the absence of both explicit and spontaneous chiral symmetry breaking. Any remain-
ing difference in the absence of explicit breaking thus signals the SχSB. Therefore, the use of
exactly chiral fermion formulation is mandatory in the lattice calculation, in order toavoid fake
contributions toΠ(1)

V−A(q2) due to non-chiral lattice fermion formulations such as the Wilson-type
fermions. Here we use the overlap fermion [8], which respects exact chiral symmetry at finite
lattice spacings. Employing this fermion, we have successfully done a precise calculation of the
chiral condensate [9], which also requires excellent chiral symmetry to control systematic errors.

We perform a two-flavor QCD calculation on a 163×32 lattice at a lattice spacinga = 0.118(2)
fm determined with the Sommer scaler0=0.49 fm as an input [10]. The quark masses in the lattice
unit arem̂q=amq= 0.015, 0.025, 0.035, and 0.050, which roughly cover the range between 1/6 to
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1/2 of the strange quark mass. We exploit the gauge action which keep the topological charge
Q in order to accelerate the dynamical fermion simulation with the exact chiral symmetry [10].
The main simulations are done in theQ=0 sector, using 10,000 trajectories. For each sea quark
mass, the measurements are made at every 50 trajectories. Statistical errors are estimated from a
jackknife analysis with 100 jackknife bins each containing two consecutivemeasurements. Details
of our configuration generation and the pion spectrum and decay constant analysis are found in [10]
and [11], respectively.

We calculate the current-current correlators for vector and axial-vector currents to obtain the
corresponding vacuum polarization functions. We use as the vector current V(12)

µ =Zq̄1γµ(1−
aD/2m0)q2, whereq1 andq2 represent different flavors of quarks,D the overlap-Dirac operator
in the massless limit, andm0=1.6. The axial-vector currentA(12)

µ is the same butγµ is replaced
by γµγ5. The factor(1−aD/2m0) is necessary to make theV andA form an exact multiplet un-
der the axial transformation. Because of this exact symmetry leading to the strong correlation,
even the lattice artifacts and statistical fluctuations cancel betweenVV andAA correlators except
for the effects of SχSB. Indeed, the statistical errors are much smaller than those of the previous
calculations of theVV correlator [12]. The common renormalization constantZ = 1.3842(3) is
determined nonperturbatively [11].

Since the continuous rotational symmetry is violated on the lattice atO(a2) and the currents
we use are not conserved (cf. [13]), the general form of the current-current correlator reads

ΠJµν(q̂) = ∑
x

eiq̂·x〈0|T
[

J(21)
µ (x)J(12)

ν (0)
]

|0〉

=
∞

∑
n=0

B(n)
J (q̂µ)2nδµν +

∞

∑
n,m=1

C(n,m)
J (q̂µ)2n−1(q̂ν)2m−1, (2)

whereJ =V or A. B(n)
J andC(n,m)

J are scalar functions of lattice momentum ˆqµ=2πnµ/L with nµ an
integer ranging from−L/2+1 to L/2 (L=16 or 32 for spatial or temporal direction, respectively).
In the continuum limit, onlyB(0)

J andC(1,1)
J survive. B(0)

J could contain a power divergent contri-
bution due to a contact term, but the exact symmetry present between the vector and axial-vector
currents guarantees that this contribution cancels in the differenceΠV µν −ΠAµν . Coefficients other

thanB(0)
J andC(1,1)

J represent lattice artifacts. In the differenceΠV µν −ΠAµν , these lattice artifacts
are negligible as numerically confirmed below.

We define a measure of the Lorentz-violating lattice artifacts by

∆J = ∑
µ,ν

q̂µ q̂ν

(

1
q̂2 −

q̂ν

∑λ (q̂λ )3

)

ΠJµν , (3)

which contains all ofB(n)
J andC(n,m)

J butB(0)
J norC(1,1)

J . Figure 1 shows∆J for J =V andA (top) and
their difference (bottom) as a function of ˆq2 atm̂q=0.015. While we observe statistically significant
non-zero values of∆J depending on ˆq2, the difference is orders of magnitude smaller than the
individual ∆J. Similar plot is obtained for ˆmq=0.050. This indicates that the Lorentz-violating
lattice artifacts indeed cancel in the differenceΠV µν −ΠAµν and are insensitive to SχSB or mq.
Neglecting the Lorentz-violating terms, we analyze the difference

ΠV µν −ΠAµν =
(

q̂2δµν − q̂µ q̂ν
)

Π(1)
V−A− q̂µ q̂νΠ(0)

V−A, (4)
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Figure 1: q̂2 dependence of∆J (J = V or A) (top) and their difference (bottom). The result for ˆmq=0.015 is
shown.

whereΠ(1)
V−A andΠ(0)

V−A represent the transverse and longitudinal contributions, respectively.

First we calculateLr
10(µ) from Π(1)

V−A. At the next-to-leading order, ChPT predicts [14]

Π(1)
V−A(q2) = − f 2

π
q2 −8Lr

10(µ)−
ln
(

m2
π

µ2

)

+ 1
3 −H(x)

24π2 , (5)

H(x) = (1+x)

[√
1+x ln

(
√

1+x−1√
1+x+1

)

+2

]

, (6)

wherex ≡ 4m2
π/q2, andµ is a renormalization scale set equal to the physicalρ meson massmρ .

Using the measured values of ˆmπ and f̂π (mπ and fπ in the lattice unit), we fit the data of ˆq2Π(1)
V−A

at four quark masses with (5) to obtainLr
10(mρ) varying fit range of ˆq2. Correlation among the

data points are ignored since each of all the data comes from different sea quark ensemble (also see
below). It turns out that the fit including only the smallest ˆq2 point (q̂2=0.038, which corresponds
to (320 MeV)2) gives an acceptableχ2/dof (∼0.5). The fit is shown in Fig. 2 as a function of
m̂q (circles and solid curve). Once the second smallest ˆq2 (∼ (650 MeV)2 in the physical unit)
is included the fit becomes unacceptable (χ2/dof ∼ O(40)). This may indicate the breakdown
of the chiral expansion at such a largeq2. Our result from the smallest ˆq2 data isLr

10(mρ) =

−5.22(17)×10−3. Here, the error is statistical only.
We estimate the systematic error due to higher order effects of the chiral expansion using a

modified fit function to cover a wider range of ˆq2 (see below). We obtain a slight negative shift,
0.3×10−3, which is added to the systematic error. The finite size effect may be sizable inthe pion-
loop effects, which is the third term in (5), since the lattice volume (1.9 fm)3 is not large enough.
We estimate its magnitude by replacing the momentum integral with a sum.f̂π andm̂π are also
corrected following [15]. Taking these corrections into account, we fit the data at the smallest ˆq2

to (5) and obtainLr
10(mρ)|V=∞ = −5.74(17)×10−3 with χ2/dof= 2.3 as shown in Fig. 2 (triangles

and dashed curve). We take the difference between these two results asan estimate of the systematic
errors. We then quote

Lr
10(mρ) = −5.2(2)(+0

−3)(
+5
−0)×10−3, (7)

where the first error is statistical, and the second and third are the estimated systematic uncertainties
due to higher order effects inq2 and the finite size effect, respectively. Since only one value of ˆq2 is
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Figure 2: q̂2Π(1)
V−A|q̂2=0.038 as a function of quark mass. The fit results with (solid) and without (dashed)

finite volume correction are shown.

included in the fit, the error from the chiral fit may be underestimated. Furthermore, other sources
of uncertainty,e.g.finite lattice spacing and lack of a dynamical strange quark, exist. Nevertheless,
(7) is already consistent with the experimental value−5.09(47)×10−3 [16].

Next, we consider the squared-mass splitting between charged and neutral pions. The splitting
in the chiral limit solely comes through the electromagnetic interaction and is written by the integral
of q̂2Π(1)

V−A as given in (1). In order to avoid possibly large discretization effects in the large ˆq2

region, we separate the whole integral region into two parts at ˆq2=2.0, and estimate each part as
follows.

For the lower ˆq2 region (≤ 2.0), we fit the data to an ansatz

q̂2Π(1),fit
V−A (q̂2) = − f̂ 2

π +
q̂2 f̂ 2

V

q̂2 + m̂2
V

− q̂2 f̂ 2
A

q̂2 + m̂2
A

− q̂2

24π2

X(q̂2)

1+x5(Q2
ρ)4 , (8)

whereQ2
ρ = q̂2/m̂2

ρ with m̂ρ the physicalρ meson mass in lattice unit. Here and in the following
xi denotes a fit parameter. We introduce poles of the lowest-lying state for bothvector and axial-
vector channels with masses ˆmV,A and decay constantŝfV,A. We put the constraintŝf 2

π = f̂ 2
V − f̂ 2

A

and f̂Am̂A = f̂Vm̂V among them so that they satisfy the first and second Weinberg sum rules [17].
We also assume a linear dependence on ˆm2

π : f̂V = x1 + x3m̂2
π andm̂V = x2 + x4m̂2

π . The function
X(q̂2) is either

ln

(

m̂2
π

m̂2
ρ

)

+
1
3
−H(4m̂2

π/q̂2)+x6Q2
ρ , (9)

or x6Q2
ρ ln(Q2

ρ). (10)

Then, the function (8) behaves asO(q−6,q−6 lnq2) at largeq2 in the chiral limit, which is consistent
with the asymptotic scaling predicted by the operator product expansion (OPE) [18]. Taking (9) for
X(q̂2), Π(1),fit

V−A (q̂2) reduces to the ChPT prediction (5) whenQ2
ρ ≪ 1, while (10) gives a logarithmic

term in the largeQ2
ρ region as expected by OPE.

We fit the data at ˆq2 ≤ 2.0 using the measured values off̂π andm̂π as shown in Fig. 3. We
have only attempted an uncorrelated fit since the full covariance matrix is likelyill-determined for
many data points and free parameters in this fit. Both (9) and (10) fit the data quite well and indeed
give a reasonableχ2/dof, though the latter is slightly better. Integrating over ˆq2 in the chiral limit,

5
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Figure 3: The fit results with (9) (dashed curves) and (10) (solid curves). The results in the chiral limit are
also shown. The statistical errors shown are smaller than the symbol size.

we obtainm2
π± |q̂2≤2.0= 676(50) and 811(12) MeV2 for (9) and (10), respectively. The difference

arises from the chiral extrapolation around ˆq2=0.1–0.2, since (9) contains the chiral logarithmic
term. Recalling that in the determination ofLr

10 the ChPT formula fits the data only at the smallest
q̂2 and (10) fits the data better than (9), we take the central value from the fit with (10) and the
difference as a systematic error due to the chiral extrapolation.

Expanding ˆq2Π(1),fit
V−A around ˆq2 = 0 in the chiral limit and comparing with (5), we obtain

Lr
10(mρ)= − f̂ 2(2x2

1 − f̂ 2)/(8x2
1x2

2). The fit results for (9) givesLr
10(mρ) = −4.9× 10−3. The

difference from the central value is added to the systematic error from thehigher order effect, and
included in (7) as already mentioned.

The remaining part of the integral ( ˆq2 ≥ 2.0) is estimated based on the OPE, which pre-
dicts Π(1)

V−A(q2) ∼ a6/(q2)3 in the chiral limit for largeq2 up to a logarithmic term. Assuming

Π(1)
V−A|m̂q=0 = a6/(q̂2)3 at q̂2=2, the fit result with (10) givesa6=−0.0035. In the estimate of the

final result, we use a phenomenological value in the range [−0.001,−0.01] GeV6 [19] to be con-
servative. An integral then givesm2

π± |q2≥2.0= 182(149) MeV2.

Summing up the two parts, we obtain

m2
π± = 993(12)(+ 0

−135)(149) MeV2, (11)

as the pion squared-mass splitting in the chiral limit. The first error is statistical; the second and
third ones are due to the chiral extrapolation and the uncertainty ina6. The result is reasonably
consistent with the experimental value at the physical quark mass [1261 MeV2]. In addition to the
errors quantified above, other sources of systematic errors may still remain. We do not expect, how-
ever, substantial systematic errors other than those estimated above, sincethe integral is dominated
by theq̂2 ∼ 0 region where the integrand ˆq2Π(1)

V−A/ f̂ 2 in the chiral limit is strongly constrained by

the first Weinberg sum rule[q̂2Π(1)
V−A]q̂2=0/ f̂ 2=1.

In this work, we have demonstrated that theS-parameter and the pNGB mass can be calculated
using the lattice QCD technique. Since these quantities are generated solely through SχSB, the
exact chiral symmetry on the lattice plays an essential role to prohibit contaminations from the
explicit breaking. The method is general and the application to other vector-like gauge theories
with arbitrary number of colors and flavors is straightforward. Thus with this method the lattice
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technique is able to directly investigate physical quantities relevant for the LHC phenomenology.
In addition to these quantities, we can also calculatea6 and the strong coupling constant using the
data in the largeq2 region. The results will be reported in a subsequent paper [20].
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